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Abstract

In the current study, the nonlinear ®nite element method is used to formulate a micromechanical model of an al-

uminium alloy reinforced bidirectionally with high-modulus SiC ®bres. Therewith, comprehensive numerical investi-

gations of the thermomechanical cyclic behaviour of the laminate are possible.

Primarily, the geometrical model of the laminate is presented from which a three-dimensional unit cell can be

deduced which is the starting point of further investigations. Subsequently, special emphasis is placed on the inelastic

deformation behaviour of the metal matrix because of its signi®cant in¯uence on the composite behaviour. Therefore,

a model which not only takes into account the coupling between viscoplasticity and damage but also allows an im-

proved material description of the elastic±inelastic transition range by using the transition ¯ow potential is recom-

mended. Furthermore, thermal residual stresses induced by the manufacturing process have to be considered in the

model.

At ®rst, the cyclic mechanical behaviour of the laminate at a constant temperature is investigated at various strain

amplitudes by closely analysing the evolution of the macroscopic hysteresis loops and the microscopic damage growth

in the course of the cycles. Superimposing a cyclic thermal load to the mechanical load strongly in¯uences the be-

haviour of the composite, whereby the phasing between the mechanical load and the temperature has a signi®cant

impact. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With metal matrix composites (MMCs), materials science o�ers high-performance materials suitable for
many weight-saving applications. This class of materials is especially attractive for structural applications
because of its high strength-to-weight and sti�ness-to-weight ratios even at elevated temperatures.

However, to submit an e�cient employment and to take advantage of the entire application potential,
the complex mechanical behaviour of MMCs has to be understood. Furthermore, the fact that the
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deformation and failure mechanisms of MMCs are much more sophisticated under cyclic mechanical
loadings than under purely monotonic loadings cannot be ignored.

However, in many typical applications, MMCs are subjected to a cyclic mechanical loading along with a
superimposed variation in temperature. This type of loading condition is referred to as thermomechanical
fatigue (TMF) and can be regarded as one of the most severe types because the signi®cant di�erence in the
coe�cient of thermal expansion between the matrix and the ®bre (Mall and Schubbe, 1994) causes high
internal stresses raising irreversible deformation and failure mechanisms in the composite. Therefore, this
type of loading is especially investigated in the current study.

The cost- and time-intensive experimental investigations of MMCs can be supported by microme-
chanical analyses. In contrast to the analytical models (Aboudi, 1982; Dvorak and Bahei-El-Din, 1982),
computational methods such as the ®nite element method in combination with the unit cell approach allow
a coverage of complex loading conditions and the inclusion of sophisticated material models which are able
to describe the variety of di�erent material e�ects. In order to predict accurately the time- and temperature-
dependent properties of the composite, the constituents have to be modelled as exactly as possible.
Therefore, a comprehensive uni®ed viscoplastic constitutive theory extending Chaboche's model (Cha-
boche, 1977), which is one of the most precise constitutive models especially for metallic materials (Lion,
1994), is proposed. This theory also takes into account damage processes by using a continuum approach to
damage mechanics (Lemaitre, 1985; Chaboche, 1988a,b).

Many numerical analyses have been carried out using a unit cell micromechanical model to compute the
mechanical or thermomechanical behaviour of composites reinforced by continuous unidirectional ®bres or
short discontinuous ®bres. To date, only a few researchers have examined the properties of multidirec-
tionally reinforced MMCs. The current study focuses on a cross-ply laminate whose numerical investiga-
tion necessitates a three-dimensional model. Bigelow (1992) calculated thermal residual stresses in a SiC/Ti
[0/90] laminate. For the same material, Nicholas et al. (1993) analysed the in¯uence of a thermomechanical
cyclic loading on the fatigue behaviour of the composite. Sherwood and Quimby (1995) used viscoplastic
constitutive equations based on the theory of Bodner and Partom to investigate the damage growth in
titanium-based metal matrix composites.

Because all previous analyses of cross-ply laminates known are based on titanium matrix composites, the
current study focuses on the thermomechanical behaviour of aluminium bidirectionally reinforced with SiC
®bres. Thus, it assists in addressing the lack of information of this uncertain class of materials.

2. Finite element model of the cross-ply laminate

To facilitate an analysis of the laminate by the ®nite element method, an idealisation of the ®bre ar-
rangement has to be introduced. Here an antisymmetric cross-ply laminate with the stacking sequence [0/90]
is considered. The underlying idealisation in the form of a periodisation is presented in the upper part of
Fig. 1 and is based on the subsequent geometrical assumptions:
· Fibres of straight cylinders are formed with circular cross-sections of the diameter Df � 2Rf .
· All ®bres possess identical geometry and are homogeneous.
· Fibres are in®nitely long, i.e. the ratio of diameter Df to length Lf is very small.
· Fibres are arranged parallely and unidirectionally in one ply with a distance between neighbouring ®bre

centrelines of 2A.
· Two neighbouring plies are twisted around 90° to each other with a distance between adjoining crossed

®bres of 2B.
· Assuming a very thick laminate, border in¯uences can be neglected.
From the geometric parameters Rf , A and B, the ®bre volume fraction can be easily determined:
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Vf � p
4

R2
f

AB
: �1�

By considering the symmetry of this ®bre arrangement, the smallest three-dimensional representative part,
the unit cell, is obtained. The lower part of Fig. 1 shows this extracted unit cell which is the basis for a ®nite
element mesh of 780 8-noded brick elements and 912 nodes and which was created using the MENTAT
preprocessor. Convergence studies with ®ner meshes and higher-order elements proved that this subdivision
allows good results under acceptable computing times.

The macroscopic response of the laminate is decisively in¯uenced by the inelastic deformation behaviour
of the metallic matrix (Sherwood and Quimby, 1995). Therefore, viscoplastic constitutive equations with
coupled damage are employed to describe the matrix. This model also allows an excellent representation of
the elastic±inelastic material behaviour especially under cyclic loads as it comprehends ductile damage
beginning with strong inelastic deformation. For the current study, this constitutive model was imple-
mented into the ®nite element package MARC in the form of a user-supplied material model.

In contrast, the ceramic ®bres are supposed to deform purely elastically in the applied temperature and
load range. Fibres and metallic matrix are assumed to be perfectly bounded, so that no debonding occurs at
the interface between the two constituents. This assumption is in agreement with experimental results of
Flom and Arsenault (1986) who found the bonding between aluminium and silicon carbide to be very
strong. Furthermore, interface stresses are limited by the relatively low stress level in the aluminium matrix,
so that the interface does not show any debonding even for loads normal to the ®bre axis.

Fig. 1. Idealised ®bre arrangement and resulting unit cell.

H. Ismar et al. / International Journal of Solids and Structures 38 (2001) 127±141 129



3. Coupled viscoplastic-damage material model

The constitutive equations of metallic materials should take into account the most important e�ects of
inelastic deformation such as the increase of the yield stress with rising deformation, time dependency, the
Bauschinger e�ect (the premature inelastic deformation after a change of the loading direction) and the
hysteresis loops under cyclic loading conditions. Therefore, an extended version of the uni®ed viscoplastic
material model of Chaboche (1977) was used to describe the metallic matrix in the composite. By expanding
this model with the transition ¯ow potential (TFP), a constitutive theory is obtained which is also able to
describe changing yield surface geometry and accompanying inelastic volume changes as they were ob-
served by Ismar et al. (1990) at the beginning of inelastic deformation after a purely elastic loading period.

Additionally, ductile damage caused by strong inelastic deformation in¯uences the mechanical behav-
iour of the metallic matrix and, therefore, has to be considered too. Damage in metals due to inelastic
deformation can be studied using di�erent models (Bonora et al., 1994). By simplifying, these models can be
grouped into two sets. Models based on an indirect damage variable use an additional variable calculated
by the current value of stress, strain or energy (Rice et al., 1969; McClintock, 1968). On the contrary, the
continuum damage mechanics (CDM) includes theories in which damage is represented by one or several
constitutive thermodynamic variables calculated by coupling them with stresses and strains. This approach
was also employed in the current study.

Damage is introduced here by Kachanov's (1958) concept of e�ective stress

~rij � rij

1ÿ x
; �2�

where rij are the components of the stress tensor and x, a scalar variable of damage caused by rising
microdefects as microcracks and microvoids. This scalar de®nition of damage implies the similarity of the
mechanical response under compression and tension. However, as Hansen and Schreyer (1995) stated, the
microdefects may partially close in compression leading to a deactivated damage status. Therefore, an
active damage variable

~x � x H�Ir
1 �

� � H�1ÿH�Ir
1 ��
� � x; Ir

1 P 0;
Hx; Ir

1 < 0;

�
�3�

is considered here. H��� represents Heaviside's function, Ir
1 � rii, the ®rst invariant of the stress tensor and

H, the so-called microcrack closure parameter (Lemaitre, 1992) with 06H 6 1.
Assuming small deformations, the total strain rate tensor _eij is a linear superposition of an elastic _ee

ij, a
thermal _et

ij and an inelastic component _ei
ij, i.e.

_eij � _ee
ij � _et

ij � _ei
ij: �4�

Considering the principle of strain equivalence (Lemaitre, 1992), which states that any strain constitutive
equation for the damaged material is derived by substituting the stress by the e�ective stress in the equa-
tions of the virgin material, the law of linear thermoelasticity of the damaged material is obtained:

_ee
ij � _et

ij �
1

E�1ÿ x� ��1� t� _rij ÿ t _rkkdij� � at _T dij �5�

with the rate of stress _rij (which is not a frame invariant), the temperature T and the temperature-dependent
material parameters Young's modulus E � E�T �, Poisson's ratio t � t�T � and tangent coe�cient of ther-
mal expansion at � at�T �.

In order to couple damage constitutive equations also with the viscoplastic equations, an inelastic po-
tential is de®ned in the e�ective stress space:
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X � K
N � 1

~sv�~sij� ÿ r
K

* +N�1

� K
N � 1

~so

K

* +N�1

; �6�

where K and N are material parameters, :h i, the Mac Auley brackets and ~sij, the components of the e�ective
active stress tensor,

~sij � ~rij ÿ
Xm

k�1

xk
ij; �7�

which can be interpreted as the di�erence between the components of the e�ective stress tensor and several
kinematic hardening variables xk

ij. The e�ective active equivalent stress ~sv will be discussed below. The
elastic domain (potential surface with X � 0) is de®ned by the condition

~sv�~sij� ÿ r � ~so6 0: �8�
In Eq. (8), r is the isotropic hardening and ~so, the e�ective overstress which describes a measure for the
distance from the e�ective stress point to the corresponding point of the elastic domain.

Applying the kinetic equation, we receive the components of the inelastic strain rate,

_ei
ij �

oX
o~sij
� ~so

K

* +N

|����{z����}
_ei
v

o~sv

o~sij

oX
o~sv

; �9�

where _ei
v marks the equivalent inelastic strain rate.

Typically, the inelastic deformation of metals is described by using the v. Mises potential which is based
on the hypothesis of inelastic incompressibility. As mentioned previously, recent investigations on certain
materials have shown that inelastic volume changes occur at the beginning of inelastic deformation.
Therefore, the viscoplastic model was improved by implementing the TFP formulated by Mahrenholtz and
Ismar (1979). Thus, we receive for the equivalent e�ective active stress

~sv �

��������������������������
vI~s

1

� �2

� 6I~s0
2

v2 � 2

vuut �10�

with the ®rst invariant of an e�ective active stress I~s
1 � ~sii and the second invariant of an e�ective active

stress deviator I~s0
2 � 1

2
~s0ij~s
0
ij.

The internal variable v can be interpreted as the ratio of small (r1) to large (r2) half axis of an ellipsoid of
revolution-shaped potential surface. In the stress space, Fig. 2 compares a meridional section through the
TFP for v � 0:6 with a section through the v. Mises potential which can be obtained from Eq. (10) by
setting v � 0.

As is shown in Fries et al. (1997), the yield surface of the TFP changes its shape during the preceding
inelastic deformation. This change in shape can be realised in the model by assuming v as a function de-
pendent on the inelastic strain of the respective load cycle ei

v;n

_v � ÿA2v _ei
v;n �11�

with a material parameter A2.
Beginning with a new inelastic deformation cycle after traversing the elastic domain, v starts with the

initial value
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v�ei
v;n � 0� � A1 exp

0@ÿ yn
ij � _ei

ij

_ei
v

* +1A; �12�

where A1 is a material parameter and yn
ij, a reference tensor which is updated with the current value of the

auxiliary tensor yij when unloading occurs.
This auxiliary tensor evolves according to

_yij � v2�A3 _ei
ij ÿ A4 _ei

vyij� �13�
with the material parameters A3 and A4.

As an example, these evolution equations (11)±(13) are demonstrated in Fig. 3 for the case of purely
monotonic loading. Then, v tends to zero with increasing inelastic strain degenerating the yield surface to
the v. Mises cylinder.

Moreover, the variables of kinematic and isotropic hardening have to be de®ned. A good representation
of the cyclic hardening behaviour of metallic materials can be obtained by modifying the usual linear ki-
nematic hardening rule (Prager's rule) with a recall term. Furthermore, thermal recovery e�ects appearing
at an elevated temperature can be incorporated. Thus, we obtained

_xk
ij �

v2 � 2� �
3

Ck�1ÿ ~x� _ei
ij ÿ Ck�1ÿ ~x� _ei

vx
k
ij ÿ Crk xk

v

ÿ �Mkÿ1
xk

ij|����������{z����������}
thermal recovery

: �14�

Herein Ck, Ck, Crk and Mk are material constants and xk
v is an equivalent value of the kinematic hardening

tensor. As the index k denotes several kinematic hardening terms of the same type are superposed allowing
a greater ¯exibility in the adaptation of the kinematic hardening on the material behaviour.

The hardening model is complemented by the isotropic hardening r causing an expansion of the yield
surface. This evolves according to

_r � B Q� ÿ r��1ÿ ~x� _ei
v ÿ Cr r ÿ Q r� �|�������{z�������}

thermal recovery

�15�

starting from the initial value r�ei
v � 0� � R0. B, Q, Qr and Cr are material parameters.

Finally, the growth of damage is given by (Lemaitre, 1992)

_x � g
S

_ei
vH�ei

v ÿ ei
v0�; �16�

Fig. 2. Meridional section through the yield surface of the TFP (v � 0:6) and the v. Mises potential (v � 0).
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where ei
v0 is the equivalent inelastic strain below which no damage occurs, S, a material parameter and g, the

damage energy release rate

g � 1

2E�1ÿ ~x� �1
�
� m�Ir0

2 �
1ÿ 2m

3
Ir

1

ÿ �2

�
: �17�

Therewith, the sophisticated material law is completed.

4. Investigated composite material

The composite laminate investigated in this study is a cross-ply reinforced SiC/Al with a ®bre volume
fraction of Vf � 32%. Under the condition of identical distances between neighbouring parallel ®bres in one
ply and between neighbouring crossed ®bres in adjoining plies, which means the equality of the geometric
parameters A and B in Fig. 1, and assuming a ®bre diameter of Df � 140 lm this ®bre volume fraction
results in a ply thickness of 219 lm. As our comparing simulations performed before have shown, minor
discrepancies between the geometric parameters do not seriously in¯uence the macroscopic behaviour of
the composite.

The matrix of the laminate is described by a cold-aged AlMgSi1 alloy (EN AW-6082) whose elastic,
thermal and viscoplastic parameters were determined on monolithic samples at our laboratories (Ismar and
Penth, 1998). Three distinct sets of parameters at 20°C, 100°C and 200°C were used because of the strong
temperature dependency of the material parameters. Values between these sampling points were obtained
by linear interpolation. The damage parameters were adopted from Lemaitre (1992).

Fig. 3. TFP in the mean active stress space under monotonic loading.
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As mentioned before, the isotropic and homogeneous ®bres deform purely elastically. In order to model
the composite behaviour as realistically as possible, the fact cannot be neglected that because of the large
di�erence of the coe�cients of thermal expansion between the ceramic ®bre and the metallic matrix, re-
sidual stresses develop during the fabrication process in which the composite passes through several
temperature regions. Additionally, this induced residual stress state can also cause inelastic deformation
processes which signi®cantly in¯uence the mechanical behaviour of the laminate.

Therefore, in all subsequent simulations, a cooling process from the stress-free temperature of 200°C to
20°C with a cooling rate of 4°C sÿ1 followed by a hold time of 400 s is considered. The residual stress and
deformation state due to the cooling process are more exactly speci®ed by Ismar and Schr�oter (1999).

5. Results and discussion

5.1. Cyclic mechanical load

Primarily, the behaviour of the laminate was examined under cyclic mechanical loads oriented parallel to
one of the two ®bres. Various strain-controlled loadings with macroscopic strain amplitudes Demac of 0.1%,
0.15% and 0.2% were performed over 40 cycles at a loading rate of _emac � 10ÿ5 sÿ1. In all cases, the tem-
perature was kept constant at 100°C.

Fig. 4 compares the macroscopic stress±strain hysteresis loops of the three di�erent strain amplitudes for
the ®rst, ®fth and 40th loading cycles, respectively. Conspicuously, the asymmetric shape of these hysteresis
loops provoked by the thermal residual stresses after thermal preloading can be observed. At each loading
condition, the absolute value of the minimum macroscopic stress is higher than the value of the corre-
sponding maximum macroscopic stress. This asymmetry increases with increasing strain amplitudes be-
cause the absolute value of the minimum stress grows faster than the maximum stress when external strain
amplitude increases.

Moreover, a decrease in the maximum macroscopic stress and an increase in the absolute value of the
minimum macroscopic stress in the course of the cycles is observed when loaded with a strain amplitude of

Fig. 4. Stress±strain cycles of the laminate under di�erent strain amplitudes.
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0.1% or 0.15%. Thereby, the decline of the maximum macroscopic stress is not as high as the increase of the
absolute value of the minimum macroscopic stress.

Under the condition of Demac � 0:2%, only a slight decrease of the maximum macroscopic stress can be
recognised, whereas the absolute value of the minimum macroscopic stress still increases. Comparing the
three di�erent loops for a certain strain amplitude, the decrease of the maximum macroscopic stress and the
increase of the absolute value of the minimum stress concentrate on the beginning cycles. Thus, especially
for the strain amplitudes of 0.15% and 0.2%, it can be observed that the maximum and minimum stresses
alter during the ®rst ®ve cycles almost as strongly as during the subsequent 35 cycles.

Fig. 4 also reveals ¯uctuations and a narrowing of the hysteresis in the course of the cycles. The e�ect of
the shifting hysteresis (called ratchetting) is summarised in Fig. 5 using the magnitude of the remaining
strain em de®ned as the average of the macroscopic strain values of one loop at rmac � 0.

At all loadings, the hysteresis varies continuously but with declining rate to higher remaining strains.
Providing a constant cycle number, an increase of the strain amplitude from 0.15% to 0.2% causes a smaller
growth of the remaining strain than an increase of the strain amplitude from 0.1% to 0.15%. Special at-
tention has to be directed to the relative incline of the remaining strain. Thus, under a strain amplitude of
0.1%, the remaining strain after 40 cycles is 4.3 times higher than that after the ®rst cycle, whereas under
strain amplitudes of 0.15% and 0.2%, only a hysteresis ¯uctuating after 40 cycles can be observed which is
2.7 resp. 1.7 times higher than the initial value.

Additionally, after ®nishing 40 cycles the loops have much more shift in the case of small external
loadings because the slope at the end of the curve is by far the greatest at a loading amplitude of
Demac � 0:1%.

As already indicated in Fig. 4, an increasing narrowing of the hysteresis loops in the course of the cycles
can also be detected. This phenomenon leads to a continuous decline of the deformation energy per cycle
dissipated by inelastic-deformation mechanisms. Thus, Fig. 6 displays for the three investigated strain
amplitudes the evolution of the inelastic work of deformation wi normalized to the highest value wi

max

appearing at a strain amplitude of Demac � 0:2% in the ®rst cycle in the course of loading.
Inelastic deformation still proceeds after 40 cycles ± even under the condition of the smallest load

amplitude of Demac � 0:1%. Thereby, at Demac � 0:1%, the inelastic work of deformation was lessened to
20%, at Demac � 0:15±32%, and at Demac � 0:2±53% of the respective maximum value. This reduction of
variation indicates that the hysteresis width diminishes more slowly when the external load amplitude is
raised.

Moreover, the di�erent maximum values of the three loading cases have to be regarded. At a strain
amplitude of 0.2% (0.15%), the maximum value of the inelastic work of deformation is 12.5 times (4.7

Fig. 5. Fluctuations of the hysteresis during the course of the cycles.
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times) higher than the maximum value at a strain amplitude of 0.1%. Consequently, Fig. 6 clari®es the fact
that the inelastic deformation extent strongly increases with increasing external strain amplitudes. Fur-
thermore, the decline of the inelastic deformation extent in the course of the cycles is not as pronounced as
at lower strain amplitudes.

Nevertheless, the metallic matrix still deforms inelastically after 40 cycles of the lowest investigated
loading level of Demac � 0:1% denoting that no shake-down of the composite can be determined even at the
lowest load level. On the other hand, the analysis of the loading with Demac � 0:2% proved that broad areas
of the matrix were subjected to extensive inelastic deformation causing ductile damage in the highly
strained matrix regions which can be interpreted by the nucleation and growth of microcavities.

Whereas, at the lower loadings, only little or no damage is detected within 40 cycles, Fig. 7 compares the
damage distribution in the matrix at a loading of Demac � 0:2% after the ®fth and the 40th loading cycle.
After the ®fth cycle, damage is strongly concentrated in the matrix area directly in front of the perpen-
dicularly loaded ®bre under approximately 50° to the external load indicated by the black arrow. Following

Fig. 6. Normalised inelastic work of deformation per cycle in the course of the cycles.

Fig. 7. Damage growth in the matrix during cyclic loading with Demac � 0:2%.
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an axial path parallel to this ®bre through the highly damaged matrix region starting from a point lying in
the front plane, which contains the minimum distance between crossed ®bres, only a slight decrease in the
amount of damage can be observed.

At the end of the 40th cycle, the maximum value of damage has strongly increased being more than 15
times higher than that after the ®fth loading cycle. Obviously, the highly damaged area has enlarged cir-
cumferentially to the perpendicularly loaded ®bre. Moreover, a region of great damage values has emerged
in the area lying in the middle between parallely and perpendicularly loaded ®bres. As opposed to the other
strongly damaged region, the maximum is not situated directly in front of the ®bre, because this region is
characterised by negative mean stresses which hinder damage growth.

The results of the calculations ± especially the distribution of inelastic deformation and accompanying
damage in the transversely loaded ply ± agree qualitatively well with the results of Bonora et al. (1994).
Therefore, the computations can assist in understanding the complex deformation behaviour of this group
of composites.

5.2. Thermomechanical cyclic loading

In many applications, metal±matrix composites are subjected simultaneously to varying mechanical and
thermal loads. Thereby, the phasing between temperature and mechanical loads signi®cantly in¯uences the
behaviour of the composite. Therefore, among the in®nitely possible phasings, three di�erent thermome-
chanical loading conditions will be examined for which Fig. 8 describes in each case one cycle of loading.

Fig. 8. One cycle of di�erent cyclic thermomechanical loads.
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Here it is distinguished when the temperature is kept constant, temperature and external strain are in-phase
(i.e. maximum/minimum temperature occurs at the time of maximum/minimum strain) or temperature and
strain are completely out of phase (i.e. maximum temperature occurs at the time of minimum strain and
vice versa). In all cases, we assume a strain amplitude of 0:2% and a temperature amplitude of 50°C around
a mean temperature of 100°C.

Fig. 9 summarises macroscopic stress±strain curves for the ®rst, ®fth and 40th cycles, respectively, for the
di�erent loadings. It can be distinctly perceived that a superimposition of an in-phase temperature results in
lower maximum macroscopic stresses as well as absolute values of minimum macroscopic stress compared
to the isothermal condition.

Because both the maximum stress and the absolute value of the minimum stress decrease, the extent of
asymmetry is lessened. Furthermore, the narrowed width of the hysteresis loops compared to the isothermal
loading results from a poorer inelastic deformation of the metallic matrix. This in¯uence of loading on the
inelastic deformation will be examined in particular below.

On the contrary, combining thermal and mechanical loads out-of-phase entails higher maximum mac-
roscopic stresses as well as higher absolute values of minimum macroscopic stresses compared to the
isothermal case, whereby the asymmetry of loops is intensi®ed. Moreover, the increase in the width of
hysteresis curves is caused by increased inelastic deformation of the matrix.

To examine the in¯uence of loading condition on the inelastic deformation, Fig. 10 compares the in-
elastic work of deformation per cycle wi normalised by the value of inelastic work on the ®rst cycle of
isothermal loading wi

0. In comparison with the isothermal case, superimposed in-phase temperature change
results in an accelerated reduction of the inelastic work of deformation in the course of the cycles, whereas a
superimposed out-of-phase temperature causes a deceleration of the inelastic work of deformation. Eval-
uating the peak levels in the ®rst cycle, the inelastic work of deformation for the in-phase loading is only
40% of the corresponding value of the isothermal condition, whereas the out-of-phase loading shows a
maximum approximately 2.7 times higher than at constant temperature. With the 40th loading cycle, the in-
phase loading shows an inelastic work of deformation of only 20% of the corresponding value of the
isothermal reference load. The amount of inelastic work of deformation of the out-of-phase loading is now
3.45 times higher than in the reference case. These ®gures show that the in-phase load leads to a lower

Fig. 9. Stress±strain cycles of the laminate under di�erent temperature±strain phasings.
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inelastic deformation compared to the constant temperature. On the contrary, the out-of-phase loading
substantially increases the extent of inelastic deformation.

The di�erence in the intensity of inelastic straining naturally in¯uences the damage growth in the metallic
matrix. Thus, Fig. 11 displays the damage distribution of the two non-isothermal conditions at the end of
the 40th cycle with the corresponding graph for the constant temperature already displayed at the bottom
of Fig. 7. Under in-phase loading, a maximum value of damage of only 14% of the corresponding maxi-
mum at isothermal loading was computed. On the contrary, the out-of-phase loading shows a maximum
which is 3.7 times higher than the reference value.

The very di�erent relative distributions attract particular attention. At in-phase load, the highest
damaged matrix area resides between adjoining crossed ®bres, whereas the relative distribution of the out-
of-phase condition is not very di�erent from the isothermal case.

Fig. 11. Damage after 40 cycles of thermomechanical cyclic loading.

Fig. 10. Normalised inelastic work of deformation per cycle in the process of loading.
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Thus, it can be restated that a constant strain amplitude combined with an out-of-phase temperature
worsens fatigue lives of the composite compared to the isothermal loading because of increased inelastic
deformation and faster damage nucleation and growth. On the contrary, in-phase loading enhances fatigue
lives. These results were also experimentally veri®ed by Roush et al. (1994).

6. Conclusion

The current study uses a three-dimensional ®nite element model to investigate the in¯uence of various
mechanical and thermomechanical cyclic loading conditions on the behaviour of cross-ply reinforced al-
uminium laminates.

Thermal residual stresses induce asymmetric stress±strain hysteresis loops which are characterised by a
narrowing in the course of the loading. With increasing external strain amplitudes, the extent of inelastic
deformation in the metallic matrix increases signi®cantly, thereby developing damage growth in the metallic
matrix. At isothermal load, the damage is highly concentrated in front of the perpendicularly loaded ®bre.

Superimposing a cyclic temperature on the top of the mechanical load strongly in¯uences the defor-
mation and damage behaviour of the composite. Thus, an out-of-phase temperature increases the extent of
inelastic deformation, in comparison to the isothermal case, promoting damage growth in the metallic
matrix. On the contrary, the in-phase condition leads to lower damage values and a damage distribution
di�erent from the isothermal load. Therefore, it can be stated that the out-of-phase condition has an ad-
verse e�ect on the fatigue life of the composite.
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